Pranayama (14hrs)

500/1000 Hour Teacher Training | Tiffany Cruikshank and Katja Bartsch

Yoga Medicine Vision & Mission

Vision:

Educate and empower teachers to use yoga therapeutically based on a deeper understanding of anatomy, physiology and the integration of modern science and research with traditional practices and experience.

Mission:

Create an international community of experienced yoga teachers who support the individuals and healthcare systems.

Contents

Three Levels of Respiration, Anatomy of Respiration	4
2. Breathing Mechanics	9
3. Physiology and Biochemistry of Respiration	16
4. Breath and the Nervous System	22
5. Pranayama Techniques	25

Three Levels of Respiration, Anatomy of Respiration

Introduction

Oxygen in our atmosphere

- Great oxygenation event: explosion of life
- O₂ production from blue-green algae through photosynthesis
- Today: NASA to develop technologies to oxygenate atmosphere of Mars

STEPHEN (2021)

Respiration across life forms

- Jellyfish, worms, spiders: no muscular system to increase supply & utilization of O₂
- Fish: able to increase water & O₂ stream into system as needed

STEPHEN (2021)

Breathwork - complex historical roots

Three Levels of Respiration

Ventilation, diffusion & perfusion

- Ventilation: movement of air into and out of lungs
- Diffusion, perfusion: exchange of O₂ and CO₂ between lungs and blood
- Portion of air stays in upper airways

- VENTILATION, DIFFUSION & PERFUSION
- 2 TRANSPORTATION OF BLOOD GASSES
- 3 CELLULAR RESPIRATION

Transportation of blood gasses

- Transport of O₂ and CO₂ via blood
- Capillary diffusion: exchange of O₂ and CO₂ between capillary blood and metabolically active tissue

Cellular respiration

- In mitochondria
- O₂ needed for energy production
- CO₂ diffuses out of cell into blood, returned to the capillaries in lungs and **exhaled**

Anatomy of Respiration

Lungs

Diaphragm

- Parachute-like dome separates thoracic & abdominal cavities
- Xyphoid/sternum, ribs 7-12, L1 & L2 → central tendon
- Main muscle of inhalation
- Innervation: phrenic nerve
- Connections to: psoas, QL, TVA, pericardium, liver, kidneys, stomach, spleen, pleura of lungs

3 openings:

- Esophageal hiatus- vagus nerve
- Caval hiatus- phrenic nerve
- Aortic hiatus- thoracic duct

Intercostals

- External: assist inhalation
- Internal: assist exhalation
- Innermost: assist exhalation

Intercostal Intercostal artery Intercostal vein nerve External intercostal muscle Innernal intercostal External muscle intercostal Innermost muscle intercostal muscle Collateral branches

Pelvic Floor, TVA

Pelvic Floor, TVA

Auxiliary muscles

Inhalation:

• SCM, scalenes, pecs, serratus posterior superior, external intercostals, serratus anterior (lats, upper traps)

Exhalation

• Internal & innermost intercostals, TVA, internal & external obliques, rectus abdominis, subcostals, serratus posterior inferior

, Fig. 3.10 A, Illustrator: Wesker/Voll, ©2016 Thieme Medical Publishers, Inc. All Rights Reserved.

Auxiliary muscles

Anatomy for Dental Medicine, Fig. 12.16, Illustrator: Karl Wesker, ©2016 Thieme Medical Publishers, Inc. All Rights Reserved.

Breathing Mechanics

Lung volumes and capacities

SOURCE: LUFTI, 2017

BENNETT & ZEMAN, 2005; CASALE ET AL., 2007; KAHANA-ZWEIG ET AL., 2016; LUFTI, 2017; SWIFT ET AL., 1988

Types of ventilation

- Minute ventilation: volume x frequency
- Dead space
 - » Anatomical: filling conducting zones
 - » Physiologic dead space: anatomic + alveolar dead space
- Alveolar ventilation:
 - » Relevant for effectiveness of ventilation

APPLICATION

Shallow, rapid breathing (e.g. 35 breaths/min) would almost exclusively make use of dead space ventilation with only minor gas exchange in alveoli

Deepening breath increases alveolar ventilation (via alveolar recruitment and distension).

BILO ET AL., 2012; RUSSO ET AL., 2017

How does exercise change lung function?

- Total lung capacity reflects genetic influences & body size characteristics
- Exercise can enhance strength, endurance of breathing muscles
 - » Ventilation can be increased
 - » Helps to load, transport and utilize O₂

BIERSTEKER & BIERSTEKER 1985; MCARDLE ET AL., 2010

Pathways: Nasal breathing

- Nasal cavity: higher resistance to expiration than mouth
- Variability among ethnic groups

- Nasal cycle:
 - » Wake vs. sleep: switches every ~ 2 hours / ~ 4.5 hours
 - » Speed of breathing: bigger difference in slow breathing
 - » Posture: side-lying

BENNETT & ZEMAN, 2005; CASALE ET AL., 2007; KAHANA-ZWEIG ET AL., 2016; SWIFT ET AL., 1988

Pathways: Mouth & pursed lips breathing

Mouth breathing:

- » During higher demand for air
- » Can deliver larger volumes of O2 at faster rate

Pursed lips breathing:

- » Resistance through constriction of lips
- » Slower & deeper breathing patterns
- » Increased abdominal expiratory muscle recruitment at rest

JEFFERSON, 2010; NIINIMAA ET AL., 1980; RECINTO ET AL., 2017; SPAHIJA ET AL., 2005

Inhalation – at rest

- Active inhale, passive exhale
- · Diaphragm contracts downward
- **Ribs raise** (help of external intercostals)

Expanded lungs have greater volume Air inside has more space to fill

Pressure inside decreases Air rushes into lungs to reduce pressure difference

BENDIT, 2019: PATEL ET AL., 2022; WELCH ET AL., 2019

Inhalation

- Abdominal muscles indirectly help
- Can be further assisted by auxiliary breathing muscles

PATEL ET AL., 2022

- Dysfunctional breathing pattern (upperthoracic dominant breathing)
 - » Ribs and belly hardly expand
 - » Dominant upper thoracic & neck area
 - » More shallow & faster breath

Rib motion: pump & bucket handle

Pump-handle motion

- · Ribs move out and up to front
- Primarily 1st 6th ribs
- Sternum lifts
- SCM and scalenes

Bucket-handle motion

- Side ribs move out and to the side
- Primarily 7th 10th ribs
- Increasing transverse span of ribs
- Diaphragm and external intercostals

Diaphragm movement

Expiration

Rib and diaphragm movement

Sex differences in breathing mechanics

Males:

 Pyramidal lung geometry → greater diaphragmatic action on lower lungs

Males: predominant bucket-handle rib movement

Females:

- Smaller lung capacity & ribcage, greater rib inclination
- Prismatic lung shape → increased intercostal muscle action, affecting upper lungs
- During exercise: more auxiliary muscle recruitment in females, lesser diaphragmatic fatigue

Females: predominant pump-handle rib movement

BELLEMARE ET AL., 2003; DOMINELLI & MOLGAT-SEON, 2022; MITCHEL ET AL., 2017; TORRES-TAMAYO ET AL., 2018

Exhalation – at rest

- At rest, exhalation is **passive**
- Natural recoil of diaphragm, lung tissues, chest wall
- Relaxation of inspiratory muscles

Exhalation - active expiration

• With greater demand, expiration transforms from passive to **active**

ASHHAD ET AL., 2022

- Supported by muscles that depress thorax and reduce its size
 - » Air moves more quickly out of lungs

Postinspiration

- Part of expiration
- Slows expiratory airflow
- Maximizes time for gas exchange
- Laryngeal adductors: resistance to counteract recoil force of lung & chest wall
- Eccentric activation of diaphragm prevents its abrupt relaxation

Inspiration

Expiration

postinspiration exhale

Lung

Volume

Diaphragm

Contraction

ASHHAD ET AL., 2022; BELLINGHAM, 1998; DEL NEGRO ET AL., 2018; DUTSCHMANN ET AL., 2014

Breathing disorders

Obstructive	Restrictive
Reduction in air flow	Reduction in lung volume
Difficulty getting air out	Difficulty getting air in
Often coupled with prolonged exhalation time, pursed lip breathing	May go along with rapid, shallow upper chest breathing
Examples: • Asthma • COPD (chronic obstructive pulmonary disease)	Examples: • Acute inflammation • Pulmonary fibrosis • Neuromuscular cause

Breathing disorders - asthma

Research on pranayama & asthma

Most studies include different breathing techniques

• Improvements include: lung function, systolic BP, pulse rate, QoL

APPLICATION

Bhastrika, kapalabhati: exercise respiratory muscles → potential improvements in pulmonary function

Making full use of diaphragm & abdominals in breathing may help in removal of secretions

ANSHU ET AL., 2022; BHATT & RAMPALLIVAR ET AL., 2016; JAYAWARDENA ET AL., 2020; SANTINO ET AL., 2020; SAXENA & SAXENA, 2009; SUBG ET AL., 1990; SODHI ET AL., 2014; SODHI ET AL., 2009

Respiratory (thoracic) pump

Pressure decrease in thoracic cavity

- Diaphragm descends → thoracic cavity expands
 → thoracic pressure decreases
- Impact on heart wall → right atrial pressure lowers → facilitates venous return

Pressure increase in abdominal cavity

Abdominal pressure increases when diaphragm descends

Inferior vena cava passes through thoracic AND abdominal cavity

Thoracic pressure decrease + abdominal pressure increase squeeze blood up towards heart

Effects of posture on breathing

- **Seated:** increased **rib basket** contribution
- Seated with back support: greater contribution of abdomen
- Supine: increased abdominal contribution
- Side-lying: pre-stretch of top side

From which position you teach Pranayama, matters.

ROMEI ET AL., 2010

Posture & breathing – therapeutic considerations

Breathing exercises can help to alter spinal curve.	 Respiratory training straightened thoracic hyperkyphosis. Repetitive deep breathing resolved stiffness of rib basket; straightened thoracic kyphosis
Spinal dimensions may predict pulmonary function.	Distance between T1 and T12 predicted pulmonary function in early- onset scoliosis patients.
Spinal stability may be compromised during increased respiratory demand.	 Diaphragm involved in postural stability control during sudden voluntary limb movements Reduced contribution of diaphragm and TVA to postural control in hypercapnea

 $\texttt{GLOTBECKER}\ \texttt{ETAL.}, 2014; \texttt{HODGES}\ \texttt{ETAL.}, 1997; \texttt{HODGES}\ \texttt{ETAL.}, 2001; \texttt{IZUMIZAKI}\ \texttt{ETAL.}, 2006; \texttt{OBAYASHI}\ \texttt{ETAL.}, 2012$

Posterior pelvic crossed pattern

- Pelvis: increased anterior tilt
- · Potential consequences for breathing
 - » Movement in thorax & thoracolumbar junction ↓
 - » Dysfunctional breathing patterns with reduced posterior expansion
 - » Poor relationship between diaphragm and pelvic floor

CHAITOW, BRADLEY & GILBERT, 2014B; KEY ET AL., 2008A; KEY ET AL., 2008B; KEY, 2010

Anterior pelvic crossed pattern

- Pelvis: anterior shift with increased posterior tilt
- Potential consequences for breathing
 - » Descent of the diaphragm ↓, upper chest breathing ↑
 - » Contribution of thorax in movement ↓
 - » Poor relationship between diaphragm and pelvic floor

CHAITOW, BRADLEY & GILBERT, 2014B; KEY ET AL., 2008A; KEY ET AL., 2008B; KEY, 2010

Shoulder crossed pattern

- Shoulders: round, upper thoracic kyphosis ↑, forward head posture
- Potential consequences for breathing
 - » Tendency for upper chest breathing, tendency towards hyperventilation
 - » Breath holding

CHAITOW, BRADLEY & GILBERT, 2014B; KEY ET AL., 2008; KEY, 2010

Physiology & Biochemistry of Respiration

Respiratory gases - CO₂

- Narrow range for blood gas levels
- Chemoreceptors in aorta & carotid artery monitor O₂ and CO₂ levels
- CO₂ concentration is strongest stimulus for breath regulation

CO, & tissue oxygenation (Bohr effect)

- CO₂ produced through **cellular respiration**
- Bohr effect: CO₂ must be present for O₂ to be released from Hb and for tissues to be oxygenated (e.g. in exercising muscle)

High CO, in bloodstream = improved O, delivery

Low CO, in bloodstream = tissues less oxygenated

APPLICATION

Breath holds: increasing O, delivery throughout body by increasing CO, tolerance

Rapid and / or big breathing, "superventilation": can deplete CO_2 stores (body dumps more CO_2 into lungs to maintain stable levels of O_2 and CO_2) \rightarrow drop in arterial and alveolar CO_2 levels \rightarrow tissues less oxygenated

BOITEN ET AL., 1994

CO₂ & smooth muscle dilation

- Smooth muscles governed by autonomic nervous system; e.g. in blood vessels, airways
- Highly responsive to CO₂

High CO₂ (hypercapnia) = expansion of blood vessels (vasodilation)

Low CO₂ (hypocapnia)= narrowing of blood vessels (vasoconstriction)

APPLICATION

Sympathetic arousal and resulting hyperventilation: vessels narrow → sensation of "tummy tightening" (evolutionary perspective: getting ready for action / attack)

Respiratory gases - O,

- Most O₂ travels with "hemoglobin taxi", some O₂ dissolved in blood plasma
- Bohr effect: CO₂ holds key to O₂ delivery to tissue; ensures that blood O2 stays saturated at about 98%
- Low Hb concentrations: reduced O2-carrying capacities

APPLICATION

Breath holds: impact through O₂ "second" to CO₂ impact; cellular respiration would eventually cease (eventual result would be cell death); heart muscle especially sensitive to this

Respiratory gases - Nitric oxide (NO)

Respiratory gases – Nitrio	c oxide (NO)
Background	 Produced by all life forms and in many different tissues Nobel prize in 1998: role of NO as signaling molecule
BP / blood flow	 Produced by innermost cell layer of arteries Spreads through cell membranes to smooth muscle cells → capillary walls relax → impact on BP & blood flow
Nervous system	 Neurotransmitter within NS Brain has more NO than rest of body NO promotes learning, memory recall
Immune system	 NO can enhance immune regulation NO has anti-inflammatory properties

Nitric Oxide (NO) & pranayama

Nasal breathing, humming

- Large amounts of NO produced in nasal cavity, breathed in through airways → optimal in nasal breathing
- NO can improve ventilation-perfusion rate in lung & can relax smooth muscle in bronchial tree → O2 uptake ↑
- Humming: nasal NO ↑

SANCHEZ-CRESPO ET AL., 2010; TÖRNBERG ET AL., 2002; WEITZBERG & LUNDBERG, 2002

CO, & pH regulation

- Blood acidity mainly determined by CO,
- **pH level** influences all organs → balance is imperative to life
- CO, level: instant way of pH regulation

High CO₂ (hypercapnia) = high acidity = low pH = higher breathing drive

Low CO₂ (hypocapnia) = low CO₂ (hypocapnia) = low acidity = high pH = lower breathing drive

APPLICATION **Breath holds, exercise** \rightarrow CO₂ production $\uparrow \rightarrow$ CO₂ builds up in blood \rightarrow blood becomes acidic (pH \downarrow) \rightarrow stimulates inspiratory center to increase respiration and limit further pH changes Hyperventilation without additional CO2 production (e.g. in panic attack): too much CO_2 / acid being blowed off \rightarrow pH climbs high \rightarrow breathing into paper bag helps to inhale expelled CO2, restoring needed level of pH/acid

Breathing & pH regulation

рН	CO ₂	Effects
Acidosis		
7.1	High 	Coma
7.2		Hypercapnia symptoms (drowsiness, confusion)
7.3		Breathing reflex stimulated
7.4		Normal
7.5		Mild hypocapnia symptoms (light-headedness, weakness), breathing reflex suppressed
7.6		Moderate hypocapnia symptoms (paresthesias, confusion, twitches)
7.7		Coma
7.8+	Low	Death
Alkalosis		
GILBERT, 2014		100/c/he

Breathing patterns variations

Causes:

Physiological Voluntary / therapeutically induced

Forms:

Hypoventilation

- Respiration too shallow, in-adequate to perform required gas exchange
- Increases concentrations of blood CO₂ (hypercapnia); reduces O₂ (hypoxia)
- · Alters body's pH towards acidosis

Restrictive

- Breathing in excess of metabolic requirements
- Reducing CO₂ concentrations in the blood to below normal (hypocapnia)
- Alters the body's pH towards alkalinity

Breathing patterns and pH

Voluntary hypoventilation/hypoxia

Tools:

- Breath holding, CO2 tolerance/ air hunger training
- Related concepts: hypoxic training, intermittent hypoxia

Strong metabolic stressor

- CO₂ levels ↑
- Muscle deoxygenation

Adaptations

- Hb concentration ↑
- CO₂ sensitivity ↓
- Lung ventilation, stroke volume ↑
- ANS improvement // HRV ↓; brain responses rel. to anxiety, stress, fear states

19

Immune system response modulation ↑

CRITCHLEY ET AL., 2015; GIRARD ET AL., 2020; HOLFELDER 2019; KUME ET AL., 2016; MORIYAMA ET AL., 2022; RYBNIKOVA ET AL., 2022; SALES DE CAMPOS ET AL., 2023; TIMON ET AL., 2023; TOUBEKIS ET AL., 2017; UZUN ET AL., 2023; WOORONS ET AL., 2016

Factors initiating hyperventilation

Hyperventilation can have physical and / or Elevated body temperature (fever) emotional basis Pain • (neurological basis is Voluntary . Progesterone rare); it can also be induced voluntarily. Talking • Pregnancy Hyperventilation Shortness of breath / dyspnea Air hunger • Anxiety/depression Pulmonary embolus Panic • Pulmonary hypertension Drugs/alcohol Heart failure adapted from Gardner, 1996

Hyperventilation

Acute	Chronic
 CO₂ ↓↓ (hypocapnia) at beginning of voluntary hyperventilation Rapid onset of respiratory alkalosis in voluntary hyperventilation (pH ↑) Reduced blood flow to brain & tissues (reduced CO₂ acts as vasoconstrictor) 	 Within 6-72 hours Body gets used to lower CO₂ levels ("cultivated CO₂ intolerance") May lead to stronger urge to breathe and shortness of breath

BRADLEY, 2014; GARDNER, 1996

Effects of acute hyperventilation

Neural	Involuntary muscle contractions, crampingPrickling, burning sensations
ANS related	 Sympathetic dominance: sweating, clammy hands Autonomic instability of blood vessels: labile BP
Blood flow	 Brain ↓: dizziness, visual disturbances, headache, tremor, tinnitus, hallucination, unilateral tingling Skin: vasoconstriction, cold extremities Muscle: first vasodilation, then vasoconstrictionl

Voluntary hyperventilation + hypoxia

APPLICATION

Voluntary hyperventilation / "supverventilation" followed by breath hold (e.g. Kapalabhati + breath hold, Wim Hof, Conscious Connected + breath hold)

CO₂ levels \downarrow \rightarrow respiratory alkalosis \rightarrow breathing drive \downarrow \rightarrow able to hold breath longer \rightarrow temporary hypoxia (less than normal O₂ levels in blood) \rightarrow respiratory acidosis \rightarrow breathing stimulus

When is overbreathing acceptable?

Examples

- Preparation for action
- As means to reduce excess acid levels
- Luteal phase of menstrual cycle (progesterone)
- Active exercise

CHAITOW, BRADLEY, & GILBERT (2014)

Breath and the Nervous System

Regulation of breathing / breathing patterns

Regulation of breathing - CNS

- Signal from brainstem
- Motor neurons regulated by respiratory centers control respiratory muscles
- Inspiratory rhythm governed by preBötzinger complex in medulla
- **Expiratory rhythm** generator: lateral parafacial; in active expiration

ASHHAD ET AL., 2022; BELLINGHAM, 1998; DEL NEGRO ET AL., 2018

Regulation of breathing - CO,

- CO₂ level strongest stimulus
- Chemoreceptors in aortic arch and carotid artery
 - » CO₂ ↑: blood acidity ↑
 - » To counter this: brain stem sends signal to increase respiration rate
- CO₂-sensitive brain areas
 - » CO₂ ↑: rate and depth of respiration ↑ (so CO₂ can be removed)

Regulation of breathing - stretch receptors

- Pleurae, bronchioles, and alveoli contain stretch receptors
- Hering-Breuer reflex:

Excessive stretch of stretch receptors

Info to brain Shortening of inspiration

Decreased risk of overinflating respiratory structures

Up- and down-regulation of breathing

Changes through breathing cycle by cycle (seconds)		
	Inspiration	Expiration
Pupil diameter	↑	+
Reaction time	↑	→
Fear response	↑	\
Memory retrieval	1	\

ASHHAD ET AL., 2022

APPLICATION			
	Upregulating	Focus on inhaleSuperventilation / power breathingEyes focused	Sitting upMoving
AMA	Downregulating	Pronounced / longer exhalesSlow, deep breathingEyes closed / peripheral vision	• Supine • Stillness

Respiratory sinus arrythmia (RSA)

Respiratory sinus arrhythmia: HRV in synchrony with respiration

Inhale: HR↑

Exhale: HR ↓

• Measure for ANS balance & respiratorycirculatory interaction

- Mechanisms
 - » Variation of vagal activity
 - » Atrial stretch reflex (Bainbridge)
 - » Baroreceptor reflex
 - » Pulmonary stretch reflexes (Hering-Breuer)
 - » Peripheral chemoreflexes

CUCERI ET AL., 2020; FANNING ET AL., 2020; SKYTIOTI & ELSTAD, 2022; YASUMA & HAYANO, 2004

Emotion, ANS, cognition & breathing

Emotion, cognition $\leftarrow \rightarrow$ breathing

- **Slowing** of respiration shifts ANS balance towards **PNS** (→ BP, HR, HRV)
- "Micro-dosing" breathwork

Long term plasticity of breathing practices (> minutes)		
Anxiety ↓	Calm ↑	
Panic ↓	Sleep ↑	
Depression ↓	Motor skills ↑	
Stress ↓		

ASHHAD ET AL., 2022; BERNARDI ET AL., 2001; GERRITSEN & BAND, 2018; DICKT ET AL., 2018; FINCHAM ET AL., 2023; HECK ET AL., 2019, MAGNON ET AL., 2021; MELNYCHUK ET AL., 2018; PARK ET AL., 2020; PERCIAVALLE ET AL., 2017; PRAMANIK ET AL., 2009; SCHULZ ET AL., 2016; TAVARES ET AL., 2017

Emotion & cognition - pathways

Speed & depth of breath	 Breathing pattern → signal processing in brain areas with higher functions (slower breath → calm)
Nasal breathing	 Mechanosensory nasal signals → brain regions associated with emotion and cognition
Pulmonary vagus nerve afferent activity	Pulmonary stretch receptorsMay alleviate symptoms of clinical depression
Changes in blood gases (CO2, O2)	 Acute CO₂ ↑ can induce panic attack-like behavor Deep breaths → acute lowering of CO₂ → calm

ASHHAD ET AL., 2022; BANZETT ET AL., 2021; CARRENO & FAZER. 2017; GERRITSEN & BAND, 2018; MEURET ET AL., 2008; NOBLE & HOCHMANN, 2019; PERL ET AL., 2019; YACKLE ET AL., 2017; ZELANO ET AL., 2016

Yawning

- Prolonged inspiration (wide open mouth), shorter expiration
- Triggers
 - » Low-vigilance state of brain, wake-sleep-transistion
 - » Stressful events, hunger, psychoactive drugs, neurological diseases
 - » Contagiousness
- Function (hypothesis)
 - » Stretching of airway muscles to preserve lumen and secure long-term oxygenation

Sighing

- Rhythmical physiological sighing
 - » About every 5 min, re-inflating alveoli
- Sighs associated with emotional state
 - » Relief, grief, happiness, anxiety, fatigue, boredom, excitement
- · Cyclic sighing as breathwork practice
 - » 5 min intervention
 - Breathwork improved mood and physiological arousal (respiratory rate, HR, HRV) more than meditation; cyclic sighing most effective

Pranayama Techniques

How to teach pranayama – general considerations

Respiration Variables

Rate

- Number of respiratory cycles per minute
- Length of each phase (inhale, exhale, retention)

Depth (volume)

Tidal volume is volume of air moved during one cycle of respiration

Duration

· Length of practice

Pathway

mouth vs. nose, left vs. right nostril

Position

• prone, supine, or in asanas

How to start teaching pranayama

- Repetition
- · Time of day
- Position

Progression:

- Duration
- Retention

90,1000

Bandhas

Rules of thumb

- Start simple
- Effortless
- · Recovery breath as needed
- Inhale (puraka) & inhale retention more yang/SNS
- Exhale (rechaka) & exhale retention more yin/PNS
- Right nostril yang/SNS
- Left nostril yin/PNS

Contraindications

Serious Heart & Lung conditions	Check with Dr & keep it simple (avoid kapalabhati, bhastrika, & extended retention)
Hypertension	Focus on exhales, exhale ≥ inhale, avoid kapalabhati & bhastrika, avoid extended breath retention
Elevated intraocular pressure	Exhale ≥ inhale, no inhale retention, avoid kapalabhati & bhastrika
Hypotension	Inhale & inhale retention focus
Epilepsy	No kapalabhati or bhastrika
Pregnancy	No kapalabhati, bhastrika, uddiyana bandha, or pranayama practices that increase BP Beneficial in pregnancy: ujjayi, chandra bhedana, nadi shodhana, sama vritti, lengthen exhale
Kapalabhati & Bhastrika	High blood pressure, heart disease, brain tumors, stroke, vertigo, stomach or intestinal ulcers, GERD, gastritis, glaucoma, diarrhea, systemic inflammation, & hyperventilation
Extended Kumbhaka	Pregnant, uncontrolled high blood pressure, history of heart attack or stroke, aneurysm of the aorta or in the brain, arrhythmia or tachycardia, cancer, kidney disease, or poor lung function.
Be mindful during practice of	Increasing tension, loss of easefulness, restlessness, irritability, heaviness, heat

Uses

Depending on the technique can be helpful for:

• Nervous system regulation (SNS & PNS), fatigue, stress, to calm or stimulate, concentration/focus, HRV, emotional regulation, anxiety, depression, respiratory & cardiovascular function, blood pressure regulation, and supporting immune function. Rhythmic movement of diaphragm supports circulation to the organs (liver, spleen, stomach, kidneys, intestines), lymphatic & venous return to the heart, digestion & elimination/peristalsis.

Traditional benefits:

- Supports digestion, vigor & vitality, serenity, perception, memory, and sharpens the intellect. Purify & regulate the nadis or energetic channels. Cleanses the organs, senses, mind, intellect, & ego. Prepares the body & mind to be fit for concentration/dharana & meditation/dhyana. Pranayama is the window of the self.
- "Occasionally, the same set of pranayama creates uneasiness. Be quick to switch over to a breathing pattern more conductive to the body and mind, and soothing to the nerves and brain, so that they are rejuvenated and refreshed.
 Pranayama should not become a blind routine." – BKS Iyengar

Pranayama Foundations

Observing Breath

- Breath as the bridge between mind & body
- Effortless is key!!
- Follow the breath

- Listen, do not disregard what the breath is telling you
- · Notice the story of needing breath

BREATH AWARENESS: WHAT RESEARCH SUGGESTS RIGHT NOW

Neurocognition

- Efficient use of attentional resources ↑
- Time spent in calm state ↑ (internal vs. external point meditation)

SCHÖNE ET AL., 2018; SHARMA ET AL., 2022

Diaphragmatic breathing

- "Belly breathing"
- Diaphragm movement
- Drives thoracic pump to increase venous & lymph return
- Abdominal organ massage (digestion, peristalsis, reproductive organs, liver, kidneys)
- · Vagus nerve stimulation

DIAPHRAGMATIC BREATHING: WHAT RESEARCH SUGGESTS RIGHT NOW		
96	Lung function, biomechanics	 Correlation: movement of diaphragm ↑ - changes in lung volume ↑ Facilitates slow respiration
	Cardiovascular system	• Venous return ↑ (esp. at 6 breaths/ min)
	Neurocognition/- physiology	• Stress (BP, cortisol) ↓

 $\texttt{BYEON ETAL., 2012; DICK ETAL., 2014; HOPPER ETAL., 2019; KOLAR ETAL., 2009; STROMBERG ETAL., 2015, and a state of the property of the pro$

Inhalation (Puraka)

- · Yang, energizing
- SNS dominant
- Increases BP
- Lungs as an instrument for receiving energy
- Focus on 3D expansion of ribs

Exhalation (Rechaka)

- · Yin, calming, surrender ego
- PNS dominant
- Lowers BP
- Release, let go
- · Maintain lift of ribs without muscular effort

Retention (Kumbhaka)

- In its essence, pranayama is Kumbhaka
- Retention magnifies the effects of that phase of breath
- CO₂ increases
- Increased CO₂ tolerance
- Increasing CO₂ levels (hypercapnia) → vasodilation→ increased cerebral blood flow
- Do not force
- Should not cause tension, red face/eyes, or irritation
- Maintain lift of spine throughout

Antara kumbhaka (inhale retention or puraka kumbhaka)

- Traditionally to increase energy, confidence, endurance, capacity for work, improve depression, increase BP
- Not for uncontrolled high BP, pregnant, or cardiac disorders

Bahya kumbhaka (exhale suspension or rechaka kumbhaka

- Increased parasympathetic activation, traditionally for nervous tension, muscular tension, high BP
- Extended not for low BP

Both

Not for heart issues, history of heart attack or stroke, aneurysm of the aorta or in the brain, arrhythmia or tachycardia, cancer, kidney disease, sick, or poor lung function.

KUMBHAKA: WHAT RESEARCH SUGGESTS RIGHT NOW		
#	Cardiovascular system	• BP, HR ↑
·) ° · · · · · · · · · · · · · · · · ·	Cerebral blood flow	• 1

NIVETHITHA ET AL., 2017; NIVETHITA ET AL., 2021

	Cardiovascular system / metabolism	 Repeated sprint training → greater muscle deoxygenation Performance ↑
P	Motor system	• Coordination ↑ after breath hold training (swimming)
E ET AL., 20	09; ROBERTSON ET AL., 2020; TRINCAT E	TTAL., 2017; WOORONS ET AL., 2017
E ET AL., 200	09; ROBERTSON ET AL., 2020; TRINCAT E	ET AL., 2017; WOORONS ET AL., 2017
E ET AL., 200	09; ROBERTSON ET AL.,, 2020; TRINCAT E	TAL., 2017; WOORONS ET AL., 2017

Digital Pranayama

- Delicate, usually right thumb & ring/pinky fingers
- Close off at cartilage
- Correct amount blocked off creates a smooth, even resonance
- Adjust width to adjust timing of breath

- Listen for sound variations
- Traditionally avoid with headaches, anxious, restless, nose blocked, runny nose, fever or immediately after a fever

Bandhas

Bondage, joining together or catching hold of

• Direct energy, prevent dissipation of energy, support the flow of prana

Jalandhara Bandha

- Upper lock, separates cool lunar plexus from solar plexus for vitality & longevity
- Used in inhale retention
- Lift sternum to meet chin, stretch sides of neck

Uddiyana Bandha

- Lifts energy up from lower abdomen toward head
- Used in exhale retention
- Create vacuum, draw belly up & in, relax abdominals

Mula Bandha

- · Counteracts the downward flow of energy
- Used in inhale retention
- Lift between anus & genitals

Samavritti		
OTHER NAMES	Equal ratio breathing	
NOTES	Use several recovery breaths between each round at first, then less over time	
PROGRESSION	 Begin with 1:1 (inhale:exhale) Then add inhale retention and build up- 1: ½:1, 1: ½:1, 1: ¾:1, 1:1:1 (inhale:retention:exhale) Then add exhale retention and build up- 1:1:1: ½, 1:1:1: ½, 1:1:1: ¾, 1:1:1:1 (inhale:retention:exhale:suspension) 	
BOX / TACTICAL BREATHING: WHAT RESEARCH SUGGESTS RIGHT NOW		
Es	Neurocognition/- physiology • Physiological arousal (HR) ↓	

BALBAN ET AL., 2023; BOUCHARD ET AL., 2012; RÖTTGER ET AL., 2021

Visamavritti	, co/;	
OTHER NAMES	Irregular ratio breathing	
NOTES	 Traditionally heavy on inhale & inhale retention which is why it is used with caution 4:7:8, etc (more energizing with out lifting BP) 4:4:8:2, etc (more calming) 	
PROGRESSION	Many progression options like: 4:4, 4:2:4, 4:2:6, 4:2:6; 4:4:8:2, 4:2:6, 4:4	

Pranayama Techniques

Ujjayi			
OTHER NAMES	Victorious, Ocean Breath		
NOTES	 Do not inflate abdomen, 3D movement of ribs Receive the breath, not forceful Louder is more heating 		
PROGRESSION	 Ujjayi on its own Ujjayi with inhale retention, until able to hold for 10secs Ujjayi with exhale retention, until able to hold for 10secs Add mula bandha on inhale retention Add uddiyana bandha on exhale retention Both inhale retention with mula bandha & exhale retention with uddiyana bandha (advanced, not for group classes) 		
SLOW, DEEP BR	SLOW, DEEP BREATHING: WHAT RESEARCH SUGGESTS RIGHT NOW		
96	Lung function	6 breaths/ min optimal for improving alveolar ventilation & reducing dead space	
	Cardiovascular system	 BP ↓ Stress on cardiovascular system ↓ → can help with athlete's recovery 	
	Neurophysiology	 HRV, RSA ↑ Shifting ANS balance towards PNS dominance 	

BERNARDI ET AL., 1998; BILO ET AL., 2012; JOSEPH ET A., 2005; MIGLIACCHIO ET AL., 2023; RADAELLI ET AL., 2004; RUSSO ET AL., 2017; ZACCARO ET AL., 2018; ZHANG ET AL., 2016

Viloma	VYK
OTHER NAMES	Against the grain, interrupted breathing
NOTES	Supine to beginHold onto diaphragm in pausesOn inhale or exhale
OPTIONS	 Counted (inhale 2-3, pause 2-3, repeat until full→ slow deep ujjayi exhale) By area (3-part breathing: belly→ ribs→ chest)
ADVANCED OPTIONS	Not for group classes • Add retention after villoma • Both inhale & exhale viloma

Anuloma		
OTHER NAMES	With the natural order	
TECHNIQUE	Seated: 1. Inhale through both nostrils 2. Exhale with both nostrils partially blocked » OR exhale through alternating partially blocked nostril	
NOTES	 Exhale will be longer than the inhale= PNS effects Deflate tension/stress Traditional uses: cleanses nasal passages, lowers BP, calming 	
ADVANCED OPTIONS	Add retention, bandhas, villoma	

Pratiloma		
OTHER NAMES	Against the natural order	
TECHNIQUE	Seated: 1. Inhale through 1 or both partially blocked nostrils 2. Ujjayi exhale through both nostrils	
NOTES	 Traditionally inhale is longer than the exhale= SNS effects Less commonly used, unless lengthen exhale too Traditional uses: increase BP, energize 	

OTHER NAMES	Alternate nostril breathing
NOTES	Balancing breath (yin/yang, PNS/SNS, warm/cool, right/left body, right/left brain, frontal lobe executive function/primitive brainstem) The line of the left brain in the cool of the left brain.
	• Traditionally for: even & balanced action in all aspects of the brain, peace, poise, harmony, tap into innermost self, calm nerves, serenity, prep for dhyana
PROGRESSION	1. Alternate nostril no retention
	2. Through partially closed nostril
	3. Add retention
	4. Add bandhas

Nadi Shodhana

WHAT RESEARCH SUGGESTS RIGHT NOW		
	Neurocognition	• Cognitive ability ↑ (working memory; reaction time ↓, accuracy ↑)
	Cardiovascular system	 HR, BP ↓ Slowing or breath, RSA ↑ → parasympathetic tone ↑
·) 1 - ·) 1 - · 2 7 - · 3 7 -	Cerebral blood flow	• Cerebral blood flow velocity (correlated w cerebral blood flow) ↓

BHARGAVA ET AL., 1988; BHAVANI ET AL., 2014; DEEPESHWAR & BUDHI, 2022; JOVANOV, 2005; KUMAR ET AL., 2022; RAGHURAJ & TELLES, 2008; SINHA ET AL.; 2013

Surya Bhedana & Chandra Bhedana

Surya - sun breath

- Inhale left/yang nostril
- Exhale right/yin nostril
- Energize, warm, SNS
- Exhale out heavy, lazy

Chandra - moon breath

- Inhale right/yin nostril
- Exhale left/yang nostril
- · Calm, relax, quiet, PNS
- Exhale out restlessness, irritability

Unilateral nostril breathing

WHAT RESEARCH SUGGESTS RIGHT NOW		
***	Cardiovascular system / neurophysiology	• LNB: HR, BP ↓ • RNB: HR, BP ↑
ಿ೦	Respiratory physiology	 NO availability in congested side of nose higher during UNB Nasal cycle: accumulation of NO in congested side
	Neurocognition / brain activity	 LNB: activation in posterior brain areas ↑ (meditative state) RNB: cognitive ability ↑ // anxiety ↓, language ↑ (stroke patients)

BHAVANI ET AL., 2014; DEEPESHWAR & BUDHI, 2022; MARSHALL ET AL., 2014; NIAZI ET AL., 2022; RAGHURAJ & TELLES, 2008; STASSEN ET AL., 2021

Surya Bhedana & Chandra Bhedana

BHAVANAI ET AL., 2014; RAGHURAJ & TELLES, 2008; TELLES ET L, 1996

Bee's breath		
 A vibrating, humming sound produced while exhaling through nose Start supine, then seated Fingers cover eyes/ears/nose or ears/skull 		
 Stimulate vagus nerve, quick shift to PNS Enhances flexible cognitive control Great for stress, tension, insomnia, quick calming 		

WHAT RESEARCH SUGGESTS RIGHT NOW				
	Neurocognition / -physiology	 ANS: Parasympathetic dominance CNS: enhanced cognitive control 		
	Cardiovascular system	Unclear picture regarding HR, BP		
96	Lung function	• ↑ • Improvement in chronic rhinosinusitis		

CAMPANELLI ET AL., 2020; RAJESH ET AL., 2014; VIALATTE ET AL., 2009; ABISHEK ET AL., 2019; GHATI ET AL., 2021; KUPPUSAMY ET AL., 2017A; KUPPUSAMY ET AL., 2017B; KUPPUSAMY ET AL., 2020B; MOOVENTHAN & KHODE, 2014; NIVETHITHA ET AL., 2017; NIVETHITHA ET AL., 2021; PRAMANIK ET AL., 2010; TRIVEDI & SABOO, 2021; TRIVEDI ET AL., 2023

Bhastrika			
OTHER NAMES	Bellows breath		
NOTES	 Forceful inhalation and exhalation Increase in heart rate, reduced CO2 levels (hypocapnia) → vasoconstriction, reduced cerebral blood flow 		
TRADITIONAL	 For: invigorates spleen, liver, pancreas, digestion, and abdominal muscles. Clear sinuses & runny nose. Refresh & awaken the brain. Generates prana for the entire body, but too much can wear out the system. Not for: exhaustion, weak or poor lung capacity, pregnant, glaucoma, detached retina, perhaps other eye issues, high BP, nose bleeds, ear infections, uterine prolapse, during menses 		
CONTRA- INDICATED	• Epilepsy		
WHAT RESEARCH SUGGESTS RIGHT NOW			
	Neurocognition / -physiology	• Visual & auditory reaction time ↓	
	Cardiovascular system	 Faster paced/ forceful: BP, HR, cardiac output ↑ Slow paced (6 breaths/ min): BP ↓ , HR ↓ 	
*) 0 0 0	Cerebral blood flow	• •	
96	Lung function	• ↑	

CAMPANELLI ET AL., 2020; NIVETHITHA ET AL., 2017; BHAVANANI ET AL., 2003; BHUDI ET AL., 2019; NIVETHITHA ET AL., 2017; NIVETHITHA ET AL., 2021; PRAMANIK ET AL., 2009; VEERABHADRAPPA ET AL., 2011

Kapalabhati				
OTHER NAMES	Skull-shining breath			
NOTES	 Also a Kriya practice, milder than bhastrika Forceful exhale Passive inhalation and active exhalation Increase in sympathetic activation 			
TRADITIONAL	 For: invigorates spleen, liver, pancreas, digestion, and abdominal muscles. Clear sinuses & runny nose. Refresh & awaken the brain. Generates prana for the entire body, but too much can wear out the system. Not for: exhaustion, weak or poor lung capacity, pregnant, glaucoma, detached retina, perhaps other eye issues, high BP, nose bleeds, ear infections, uterine prolapse, during menses 			
CONTRA- INDICATED	• Epilepsy			
WHAT RESEARC	WHAT RESEARCH SUGGESTS RIGHT NOW			
	Neurocognition / -physiology	 Shifting ANS balance towards SNS dominance (BP, HR ↑) Cognitive performance ↓ 		
	Cardiovascular system	• BP, HR, CO↑		
• •) • • • • • • • • • • • • • • • • •	Cerebral blood flow	• Cerebral blood flow velocity (→ cerebral blood flow) ↓		
(Pir	Motor system	• Handgrip strength ↑		
WIM HOF (WHM	WIM HOF (WHM), FAST BREATHING (FB): WHAT RESEARCH SUGGESTS RIGHT NOW			
	Neurocognition / -physiology	 FB: reaction time, movement time ↓; arousal, hindrance ↑ WHM: pain perception ↓ 		
	Immune system	 WHM: epinephrine ↑ (independent of breath retention) WHM: anti-inflammatory effect (cytokine response) 		

CAMPANELLI ET AL., 2020; JOSHI & TELLES, 2009; KUMAR ET AL., 2022; STANCÁK ET AL., 1991A; STANCÁK ET AL., 1991B; TELLES ET AL., 2014; TELLES ET AL., 2019; BUCAHANAN & JANELLE, 2021; ZWAAG ET AL., 2022; ZWAAG ET AL., 2023

Sitali & Sitkari				
OTHER NAMES	Cooling breath			
NOTES	Sitali: inhale through a curled tongueSitkari: inhale over tongue			
TECHNIQUE	 Inhale retention with jalandhara (with or without mula bandha)- ujjayi exhale Exhale through partially closed nostrils Exhale through alternate nostrils (or alternate partially closed nostrils) 			
TRADITIONAL	 Cooling, soothes, good for eyes & ears, for fever, activates liver & spleen, improves digestion, for halitosis 			
WHAT RESEARC	WHAT RESEARCH SUGGESTS RIGHT NOW			
	 Metabolism • Body temperature ↑ • O₂ consumption ↑ → pointing to a mild hypermetabolic state 			

		Oz consumption 1 4 pointing to a finia hypermetabolic state		
AMPANELLI ET AL., 2020; RAJESH ET AL., 2014; VIALATTE ET AL., 2009; TELLES ET AL., 2020				
Nauli				
OTHER	also a Kryia practice			
TECHNIQUE	Create vacuum after exhale to draw belly up & in, relax abdominals			
NOTES	Hypopressives: Relaxation of diaphragm, decrease intra-abdominal pressure Combination of exhale retention and pressure changes Can activate pelfic floor muscles, abdominals Used in urinary incontinence and postpartum			
HYPOPRESSIVES: WHAT RESEARCH SUGGESTS RIGHT NOW				
	Motor system/ posture	 For pelvic floor strength, ideally + pelvic floor muscle training Posture control, trunk muscle contraction ↑ Diaphragm thickness, strength during inspiration ↑ 		

DA CUNA-CARRERA ET AL., 2021; NAVARRO BRAZALES ET AL., 2019; JACOMO ET AL., 2020; MORENO-MUNOZ ET AL., 2021; VICENTE-CAMPOS ET AL., 2021

Progression

- 1. Shorter breath with recovery breath as needed
- 2. Longer, slower breath
- 3. Inhale retention (progressively longer)
- 4. Exhale retention (progressively longer)
- 5. Inhale retention with mula bandha & or jalandhara

bandha

- 6. Exhale retention with uddiyana bandha
- 7. Both inhale & exhale retention
- 8. Adding other variations like viloma, anuloma, bhramari, right or left nostril, alternate nostril

Sequencing Notes

- Prepare for easefulness throughout practice
- Simple practices prepare for more complex
- Follow up stimulating practices with calming/ focusing practices
- End with calm/focus, cooling, or easeful practices

Pranayama techniques - overview

Note: this categorization is based upon primary features of the techniques; some techniques may have multiple features (example: Nadi Shodana involves breathing through alternating nostrils and also breath holds)

Pranayama techniques - mechanisms

