Pranayama (14hrs) 500/1000 Hour Teacher Training | Tiffany Cruikshank and Katja Bartsch # Yoga Medicine Vision & Mission #### Vision: Educate and empower teachers to use yoga therapeutically based on a deeper understanding of anatomy, physiology and the integration of modern science and research with traditional practices and experience. ### Mission: Create an international community of experienced yoga teachers who support the individuals and healthcare systems. # Contents | Three Levels of Respiration, Anatomy of Respiration | 4 | |---|----| | | | | 2. Breathing Mechanics | 9 | | | | | 3. Physiology and Biochemistry of Respiration | 16 | | | | | 4. Breath and the Nervous System | 22 | | | | | 5. Pranayama Techniques | 25 | # Three Levels of Respiration, Anatomy of Respiration # Introduction ## Oxygen in our atmosphere - Great oxygenation event: explosion of life - O₂ production from blue-green algae through photosynthesis - Today: NASA to develop technologies to oxygenate atmosphere of Mars STEPHEN (2021) ### Respiration across life forms - Jellyfish, worms, spiders: no muscular system to increase supply & utilization of O₂ - Fish: able to increase water & O₂ stream into system as needed STEPHEN (2021) # Breathwork - complex historical roots # Three Levels of Respiration ## Ventilation, diffusion & perfusion - Ventilation: movement of air into and out of lungs - Diffusion, perfusion: exchange of O₂ and CO₂ between lungs and blood - Portion of air stays in upper airways - VENTILATION, DIFFUSION & PERFUSION - 2 TRANSPORTATION OF BLOOD GASSES - 3 CELLULAR RESPIRATION ## Transportation of blood gasses - Transport of O₂ and CO₂ via blood - Capillary diffusion: exchange of O₂ and CO₂ between capillary blood and metabolically active tissue # Cellular respiration - In mitochondria - O₂ needed for energy production - CO₂ diffuses out of cell into blood, returned to the capillaries in lungs and **exhaled** # **Anatomy of Respiration** ## Lungs ## Diaphragm - Parachute-like dome separates thoracic & abdominal cavities - Xyphoid/sternum, ribs 7-12, L1 & L2 → central tendon - Main muscle of inhalation - Innervation: phrenic nerve - Connections to: psoas, QL, TVA, pericardium, liver, kidneys, stomach, spleen, pleura of lungs #### 3 openings: - Esophageal hiatus- vagus nerve - Caval hiatus- phrenic nerve - Aortic hiatus- thoracic duct ### Intercostals - External: assist inhalation - Internal: assist exhalation - Innermost: assist exhalation ## Intercostal Intercostal artery Intercostal vein nerve External intercostal muscle Innernal intercostal External muscle intercostal Innermost muscle intercostal muscle Collateral branches # Pelvic Floor, TVA ## Pelvic Floor, TVA # **Auxiliary muscles** #### Inhalation: • SCM, scalenes, pecs, serratus posterior superior, external intercostals, serratus anterior (lats, upper traps) #### Exhalation • Internal & innermost intercostals, TVA, internal & external obliques, rectus abdominis, subcostals, serratus posterior inferior , Fig. 3.10 A, Illustrator: Wesker/Voll, ©2016 Thieme Medical Publishers, Inc. All Rights Reserved. # **Auxiliary muscles** Anatomy for Dental Medicine, Fig. 12.16, Illustrator: Karl Wesker, ©2016 Thieme Medical Publishers, Inc. All Rights Reserved. # **Breathing Mechanics** # Lung volumes and capacities SOURCE: LUFTI, 2017 BENNETT & ZEMAN, 2005; CASALE ET AL., 2007; KAHANA-ZWEIG ET AL., 2016; LUFTI, 2017; SWIFT ET AL., 1988 # Types of ventilation - Minute ventilation: volume x frequency - Dead space - » Anatomical: filling conducting zones - » Physiologic dead space: anatomic + alveolar dead space - Alveolar ventilation: - » Relevant for effectiveness of ventilation #### APPLICATION Shallow, rapid breathing (e.g. 35 breaths/min) would almost exclusively make use of dead space ventilation with only minor gas exchange in alveoli Deepening breath increases alveolar ventilation (via alveolar recruitment and distension). BILO ET AL., 2012; RUSSO ET AL., 2017 ## How does exercise change lung function? - Total lung capacity reflects genetic influences & body size characteristics - Exercise can enhance strength, endurance of breathing muscles - » Ventilation can be increased - » Helps to load, transport and utilize O₂ BIERSTEKER & BIERSTEKER 1985; MCARDLE ET AL., 2010 ## Pathways: Nasal breathing - Nasal cavity: higher resistance to expiration than mouth - Variability among ethnic groups - Nasal cycle: - » Wake vs. sleep: switches every ~ 2 hours / ~ 4.5 hours - » Speed of breathing: bigger difference in slow breathing - » Posture: side-lying BENNETT & ZEMAN, 2005; CASALE ET AL., 2007; KAHANA-ZWEIG ET AL., 2016; SWIFT ET AL., 1988 ## Pathways: Mouth & pursed lips breathing #### Mouth breathing: - » During higher demand for air - » Can deliver larger volumes of O2 at faster rate #### Pursed lips breathing: - » Resistance through constriction of lips - » Slower & deeper breathing patterns - » Increased abdominal expiratory muscle recruitment at rest JEFFERSON, 2010; NIINIMAA ET AL., 1980; RECINTO ET AL., 2017; SPAHIJA ET AL., 2005 #### Inhalation – at rest - Active inhale, passive exhale - · Diaphragm contracts downward - **Ribs raise** (help of external intercostals) Expanded lungs have greater volume Air inside has more space to fill Pressure inside decreases Air rushes into lungs to reduce pressure difference BENDIT, 2019: PATEL ET AL., 2022; WELCH ET AL., 2019 ### **Inhalation** - Abdominal muscles indirectly help - Can be further assisted by auxiliary breathing muscles PATEL ET AL., 2022 - Dysfunctional breathing pattern (upperthoracic dominant breathing) - » Ribs and belly hardly expand - » Dominant upper thoracic & neck area - » More shallow & faster breath # Rib motion: pump & bucket handle ### Pump-handle motion - · Ribs move out and up to front - Primarily 1st 6th ribs - Sternum lifts - SCM and scalenes #### **Bucket-handle motion** - Side ribs move out and to the side - Primarily 7th 10th ribs - Increasing transverse span of ribs - Diaphragm and external intercostals ## Diaphragm movement **Expiration** # Rib and diaphragm movement ## Sex differences in breathing mechanics #### Males: Pyramidal lung geometry → greater diaphragmatic action on lower lungs Males: predominant bucket-handle rib movement #### Females: - Smaller lung capacity & ribcage, greater rib inclination - Prismatic lung shape → increased intercostal muscle action, affecting upper lungs - During exercise: more auxiliary muscle recruitment in females, lesser diaphragmatic fatigue Females: predominant pump-handle rib movement BELLEMARE ET AL., 2003; DOMINELLI & MOLGAT-SEON, 2022; MITCHEL ET AL., 2017; TORRES-TAMAYO ET AL., 2018 #### Exhalation – at rest - At rest, exhalation is **passive** - Natural recoil of diaphragm, lung tissues, chest wall - Relaxation of inspiratory muscles ## Exhalation - active expiration • With greater demand, expiration transforms from passive to **active** ASHHAD ET AL., 2022 - Supported by muscles that depress thorax and reduce its size - » Air moves more quickly out of lungs ## **Postinspiration** - Part of expiration - Slows expiratory airflow - Maximizes time for gas exchange - Laryngeal adductors: resistance to counteract recoil force of lung & chest wall - Eccentric activation of diaphragm prevents its abrupt relaxation Inspiration Expiration postinspiration exhale Lung Volume Diaphragm Contraction ASHHAD ET AL., 2022; BELLINGHAM, 1998; DEL NEGRO ET AL., 2018; DUTSCHMANN ET AL., 2014 ## **Breathing disorders** | Obstructive | Restrictive | |--|--| | Reduction in air flow | Reduction in lung volume | | Difficulty getting air out | Difficulty getting air in | | Often coupled with prolonged exhalation time, pursed lip breathing | May go along with rapid, shallow upper chest breathing | | Examples: • Asthma • COPD (chronic obstructive pulmonary disease) | Examples: • Acute inflammation • Pulmonary fibrosis • Neuromuscular cause | ## Breathing disorders - asthma #### Research on pranayama & asthma Most studies include different breathing techniques • Improvements include: lung function, systolic BP, pulse rate, QoL #### APPLICATION **Bhastrika, kapalabhati:** exercise respiratory muscles → potential improvements in pulmonary function Making full use of diaphragm & abdominals in breathing may help in removal of secretions ANSHU ET AL., 2022; BHATT & RAMPALLIVAR ET AL., 2016; JAYAWARDENA ET AL., 2020; SANTINO ET AL., 2020; SAXENA & SAXENA, 2009; SUBG ET AL., 1990; SODHI ET AL., 2014; SODHI ET AL., 2009 # Respiratory (thoracic) pump #### Pressure decrease in thoracic cavity - Diaphragm descends → thoracic cavity expands → thoracic pressure decreases - Impact on heart wall → right atrial pressure lowers → facilitates venous return #### Pressure increase in abdominal cavity Abdominal pressure increases when diaphragm descends Inferior vena cava passes through thoracic AND abdominal cavity Thoracic pressure decrease + abdominal pressure increase squeeze blood up towards heart ## Effects of posture on breathing - **Seated:** increased **rib basket** contribution - Seated with back support: greater contribution of abdomen - Supine: increased abdominal contribution - Side-lying: pre-stretch of top side From which position you teach Pranayama, matters. ROMEI ET AL., 2010 ## Posture & breathing – therapeutic considerations | Breathing exercises can help to alter spinal curve. | Respiratory training straightened thoracic hyperkyphosis. Repetitive deep breathing resolved stiffness of rib basket; straightened thoracic kyphosis | |--
---| | Spinal dimensions may predict pulmonary function. | Distance between T1 and T12 predicted pulmonary function in early-
onset scoliosis patients. | | Spinal stability may be compromised during increased respiratory demand. | Diaphragm involved in postural stability control during sudden voluntary limb movements Reduced contribution of diaphragm and TVA to postural control in hypercapnea | $\texttt{GLOTBECKER}\ \texttt{ETAL.}, 2014; \texttt{HODGES}\ \texttt{ETAL.}, 1997; \texttt{HODGES}\ \texttt{ETAL.}, 2001; \texttt{IZUMIZAKI}\ \texttt{ETAL.}, 2006; \texttt{OBAYASHI}\ \texttt{ETAL.}, 2012$ # Posterior pelvic crossed pattern - Pelvis: increased anterior tilt - · Potential consequences for breathing - » Movement in thorax & thoracolumbar junction ↓ - » Dysfunctional breathing patterns with reduced posterior expansion - » Poor relationship between diaphragm and pelvic floor CHAITOW, BRADLEY & GILBERT, 2014B; KEY ET AL., 2008A; KEY ET AL., 2008B; KEY, 2010 ## Anterior pelvic crossed pattern - Pelvis: anterior shift with increased posterior tilt - Potential consequences for breathing - » Descent of the diaphragm ↓, upper chest breathing ↑ - » Contribution of thorax in movement ↓ - » Poor relationship between diaphragm and pelvic floor CHAITOW, BRADLEY & GILBERT, 2014B; KEY ET AL., 2008A; KEY ET AL., 2008B; KEY, 2010 # Shoulder crossed pattern - Shoulders: round, upper thoracic kyphosis ↑, forward head posture - Potential consequences for breathing - » Tendency for upper chest breathing, tendency towards hyperventilation - » Breath holding CHAITOW, BRADLEY & GILBERT, 2014B; KEY ET AL., 2008; KEY, 2010 # Physiology & Biochemistry of Respiration # Respiratory gases - CO₂ - Narrow range for blood gas levels - Chemoreceptors in aorta & carotid artery monitor O₂ and CO₂ levels - CO₂ concentration is strongest stimulus for breath regulation # CO, & tissue oxygenation (Bohr effect) - CO₂ produced through **cellular respiration** - Bohr effect: CO₂ must be present for O₂ to be released from Hb and for tissues to be oxygenated (e.g. in exercising muscle) High CO, in bloodstream = improved O, delivery Low CO, in bloodstream = tissues less oxygenated #### **APPLICATION** Breath holds: increasing O, delivery throughout body by increasing CO, tolerance **Rapid and / or big breathing, "superventilation":** can deplete CO_2 stores (body dumps more CO_2 into lungs to maintain stable levels of O_2 and CO_2) \rightarrow drop in arterial and alveolar CO_2 levels \rightarrow tissues less oxygenated BOITEN ET AL., 1994 # CO₂ & smooth muscle dilation - Smooth muscles governed by autonomic nervous system; e.g. in blood vessels, airways - Highly responsive to CO₂ High CO₂ (hypercapnia) = expansion of blood vessels (vasodilation) Low CO₂ (hypocapnia)= narrowing of blood vessels (vasoconstriction) #### **APPLICATION** **Sympathetic arousal and resulting hyperventilation:** vessels narrow → sensation of "tummy tightening" (evolutionary perspective: getting ready for action / attack) # Respiratory gases - O, - Most O₂ travels with "hemoglobin taxi", some O₂ dissolved in blood plasma - Bohr effect: CO₂ holds key to O₂ delivery to tissue; ensures that blood O2 stays saturated at about 98% - Low Hb concentrations: reduced O2-carrying capacities ## APPLICATION Breath holds: impact through O₂ "second" to CO₂ impact; cellular respiration would eventually cease (eventual result would be cell death); heart muscle especially sensitive to this # Respiratory gases - Nitric oxide (NO) | Respiratory gases – Nitrio | c oxide (NO) | |----------------------------|---| | Background | Produced by all life forms and in many different tissues Nobel prize in 1998: role of NO as signaling molecule | | BP / blood flow | Produced by innermost cell layer of arteries Spreads through cell membranes to smooth muscle cells → capillary walls relax → impact on BP & blood flow | | Nervous system | Neurotransmitter within NS Brain has more NO than rest of body NO promotes learning, memory recall | | Immune system | NO can enhance immune regulation NO has anti-inflammatory properties | # Nitric Oxide (NO) & pranayama Nasal breathing, humming - Large amounts of NO produced in nasal cavity, breathed in through airways → optimal in nasal breathing - NO can improve ventilation-perfusion rate in lung & can relax smooth muscle in bronchial tree → O2 uptake ↑ - Humming: nasal NO ↑ SANCHEZ-CRESPO ET AL., 2010; TÖRNBERG ET AL., 2002; WEITZBERG & LUNDBERG, 2002 ## CO, & pH regulation - Blood acidity mainly determined by CO, - **pH level** influences all organs → balance is imperative to life - CO, level: instant way of pH regulation High CO₂ (hypercapnia) = high acidity = low pH = higher breathing drive Low CO₂ (hypocapnia) = low CO₂ (hypocapnia) = low acidity = high pH = lower breathing drive # APPLICATION **Breath holds, exercise** \rightarrow CO₂ production $\uparrow \rightarrow$ CO₂ builds up in blood \rightarrow blood becomes acidic (pH \downarrow) \rightarrow stimulates inspiratory center to increase respiration and limit further pH changes Hyperventilation without additional CO2 production (e.g. in panic attack): too much CO_2 / acid being blowed off \rightarrow pH climbs high \rightarrow breathing into paper bag helps to inhale expelled CO2, restoring needed level of pH/acid ## Breathing & pH regulation | рН | CO ₂ | Effects | |---------------|-----------------|--| | Acidosis | | | | 7.1 | High | Coma | | 7.2 | | Hypercapnia symptoms (drowsiness, confusion) | | 7.3 | | Breathing reflex stimulated | | 7.4 | | Normal | | 7.5 | | Mild hypocapnia symptoms (light-headedness, weakness), breathing reflex suppressed | | 7.6 | | Moderate hypocapnia symptoms (paresthesias, confusion, twitches) | | 7.7 | | Coma | | 7.8+ | Low | Death | | Alkalosis | | | | GILBERT, 2014 | | 100/c/he | ## **Breathing patterns variations** #### Causes: Physiological Voluntary / therapeutically induced #### Forms: ### Hypoventilation - Respiration too shallow, in-adequate to perform required gas exchange - Increases concentrations of blood CO₂ (hypercapnia); reduces O₂ (hypoxia) - · Alters body's pH towards acidosis #### Restrictive - Breathing in excess of metabolic requirements - Reducing CO₂ concentrations in the blood to below normal (hypocapnia) - Alters the body's pH towards alkalinity ## Breathing patterns and pH # Voluntary hypoventilation/hypoxia #### **Tools:** - Breath holding, CO2 tolerance/ air hunger training - Related concepts: hypoxic training, intermittent hypoxia #### Strong metabolic stressor - CO₂ levels ↑ - Muscle deoxygenation #### **Adaptations** - Hb concentration ↑ - CO₂ sensitivity ↓ - Lung ventilation, stroke volume ↑ - ANS improvement // HRV ↓; brain responses rel. to anxiety, stress, fear states 19 Immune system response modulation ↑ CRITCHLEY ET AL., 2015; GIRARD ET AL., 2020; HOLFELDER 2019; KUME ET AL., 2016; MORIYAMA ET AL., 2022; RYBNIKOVA ET AL., 2022; SALES DE CAMPOS ET AL., 2023; TIMON ET AL., 2023; TOUBEKIS ET AL., 2017; UZUN ET AL., 2023; WOORONS ET AL., 2016 # Factors initiating hyperventilation Hyperventilation can have physical and / or Elevated body temperature (fever) emotional basis Pain • (neurological basis is Voluntary . Progesterone rare); it can also be induced voluntarily. Talking • Pregnancy Hyperventilation Shortness of breath / dyspnea Air hunger • Anxiety/depression Pulmonary embolus Panic • Pulmonary hypertension Drugs/alcohol Heart failure adapted from Gardner, 1996 # Hyperventilation | Acute | Chronic | |--|--| | CO₂ ↓↓ (hypocapnia) at beginning of voluntary hyperventilation Rapid onset of respiratory alkalosis in voluntary hyperventilation (pH ↑) Reduced blood flow to brain & tissues (reduced CO₂ acts as vasoconstrictor) | Within 6-72 hours Body gets used to lower CO₂ levels ("cultivated CO₂ intolerance") May lead to stronger urge to breathe and shortness of breath | BRADLEY, 2014; GARDNER, 1996 # Effects of acute hyperventilation | Neural | Involuntary muscle contractions, crampingPrickling, burning sensations | |-------------|---| | ANS related | Sympathetic dominance: sweating, clammy hands Autonomic instability of blood vessels: labile BP | | Blood flow | Brain ↓: dizziness, visual disturbances, headache, tremor, tinnitus, hallucination, unilateral tingling Skin: vasoconstriction, cold extremities Muscle: first vasodilation, then vasoconstrictionl | ## Voluntary hyperventilation + hypoxia #### **APPLICATION** **Voluntary
hyperventilation / "supverventilation" followed by breath hold** (e.g. Kapalabhati + breath hold, Wim Hof, Conscious Connected + breath hold) CO₂ levels \downarrow \rightarrow respiratory alkalosis \rightarrow breathing drive \downarrow \rightarrow able to hold breath longer \rightarrow temporary hypoxia (less than normal O₂ levels in blood) \rightarrow respiratory acidosis \rightarrow breathing stimulus # When is overbreathing acceptable? #### **Examples** - Preparation for action - As means to reduce excess acid levels - Luteal phase of menstrual cycle (progesterone) - Active exercise CHAITOW, BRADLEY, & GILBERT (2014) # Breath and the Nervous System ## Regulation of breathing / breathing patterns # Regulation of breathing - CNS - Signal from brainstem - Motor neurons regulated by respiratory centers control respiratory muscles - Inspiratory rhythm governed by preBötzinger complex in medulla - **Expiratory rhythm** generator: lateral parafacial; in active expiration ASHHAD ET AL., 2022; BELLINGHAM, 1998; DEL NEGRO ET AL., 2018 # Regulation of breathing - CO, - CO₂ level strongest stimulus - Chemoreceptors in aortic arch and carotid artery - » CO₂ ↑: blood acidity ↑ - » To counter this: brain stem sends signal to increase respiration rate - CO₂-sensitive brain areas - » CO₂ ↑: rate and depth of respiration ↑ (so CO₂ can be removed) # Regulation of breathing - stretch receptors - Pleurae, bronchioles, and alveoli contain stretch receptors - Hering-Breuer reflex: Excessive stretch of stretch receptors Info to brain Shortening of inspiration Decreased risk of overinflating respiratory structures # Up- and down-regulation of breathing | Changes through breathing cycle by cycle (seconds) | | | |--|-------------|------------| | | Inspiration | Expiration | | Pupil diameter | ↑ | + | | Reaction time | ↑ | → | | Fear response | ↑ | \ | | Memory retrieval | 1 | \ | ASHHAD ET AL., 2022 | APPLICATION | | | | |-------------|----------------|--|---| | | Upregulating | Focus on inhaleSuperventilation / power breathingEyes focused | Sitting upMoving | | AMA | Downregulating | Pronounced / longer exhalesSlow, deep breathingEyes closed / peripheral vision | • Supine • Stillness | # Respiratory sinus arrythmia (RSA) Respiratory sinus arrhythmia: HRV in synchrony with respiration Inhale: HR↑ Exhale: HR ↓ • Measure for ANS balance & respiratorycirculatory interaction - Mechanisms - » Variation of vagal activity - » Atrial stretch reflex (Bainbridge) - » Baroreceptor reflex - » Pulmonary stretch reflexes (Hering-Breuer) - » Peripheral chemoreflexes CUCERI ET AL., 2020; FANNING ET AL., 2020; SKYTIOTI & ELSTAD, 2022; YASUMA & HAYANO, 2004 ## Emotion, ANS, cognition & breathing #### Emotion, cognition $\leftarrow \rightarrow$ breathing - **Slowing** of respiration shifts ANS balance towards **PNS** (→ BP, HR, HRV) - "Micro-dosing" breathwork | Long term plasticity of breathing practices (> minutes) | | | |---|----------------|--| | Anxiety ↓ | Calm ↑ | | | Panic ↓ | Sleep ↑ | | | Depression ↓ | Motor skills ↑ | | | Stress ↓ | | | ASHHAD ET AL., 2022; BERNARDI ET AL., 2001; GERRITSEN & BAND, 2018; DICKT ET AL., 2018; FINCHAM ET AL., 2023; HECK ET AL., 2019, MAGNON ET AL., 2021; MELNYCHUK ET AL., 2018; PARK ET AL., 2020; PERCIAVALLE ET AL., 2017; PRAMANIK ET AL., 2009; SCHULZ ET AL., 2016; TAVARES ET AL., 2017 ## **Emotion & cognition - pathways** | Speed & depth of breath | Breathing pattern → signal processing in brain areas with higher
functions (slower breath → calm) | |--|---| | Nasal breathing | Mechanosensory nasal signals → brain regions associated with
emotion and cognition | | Pulmonary vagus nerve
afferent activity | Pulmonary stretch receptorsMay alleviate symptoms of clinical depression | | Changes in blood gases
(CO2, O2) | Acute CO₂ ↑ can induce panic attack-like behavor Deep breaths → acute lowering of CO₂ → calm | ASHHAD ET AL., 2022; BANZETT ET AL., 2021; CARRENO & FAZER. 2017; GERRITSEN & BAND, 2018; MEURET ET AL., 2008; NOBLE & HOCHMANN, 2019; PERL ET AL., 2019; YACKLE ET AL., 2017; ZELANO ET AL., 2016 ### Yawning - Prolonged inspiration (wide open mouth), shorter expiration - Triggers - » Low-vigilance state of brain, wake-sleep-transistion - » Stressful events, hunger, psychoactive drugs, neurological diseases - » Contagiousness - Function (hypothesis) - » Stretching of airway muscles to preserve lumen and secure long-term oxygenation # Sighing - Rhythmical physiological sighing - » About every 5 min, re-inflating alveoli - Sighs associated with emotional state - » Relief, grief, happiness, anxiety, fatigue, boredom, excitement - · Cyclic sighing as breathwork practice - » 5 min intervention - Breathwork improved mood and physiological arousal (respiratory rate, HR, HRV) more than meditation; cyclic sighing most effective # Pranayama Techniques # How to teach pranayama – general considerations ## **Respiration Variables** #### Rate - Number of respiratory cycles per minute - Length of each phase (inhale, exhale, retention) #### Depth (volume) Tidal volume is volume of air moved during one cycle of respiration #### Duration · Length of practice #### **Pathway** mouth vs. nose, left vs. right nostril #### **Position** • prone, supine, or in asanas # How to start teaching pranayama - Repetition - · Time of day - Position #### **Progression:** - Duration - Retention 90,1000 Bandhas ### Rules of thumb - Start simple - Effortless - · Recovery breath as needed - Inhale (puraka) & inhale retention more yang/SNS - Exhale (rechaka) & exhale retention more yin/PNS - Right nostril yang/SNS - Left nostril yin/PNS #### **Contraindications** | Serious Heart &
Lung conditions | Check with Dr & keep it simple (avoid kapalabhati, bhastrika, & extended retention) | |------------------------------------|---| | Hypertension | Focus on exhales, exhale ≥ inhale, avoid kapalabhati & bhastrika, avoid extended breath retention | | Elevated intraocular pressure | Exhale ≥ inhale, no inhale retention, avoid kapalabhati & bhastrika | | Hypotension | Inhale & inhale retention focus | | Epilepsy | No kapalabhati or bhastrika | | Pregnancy | No kapalabhati, bhastrika, uddiyana bandha, or pranayama practices that increase BP Beneficial in pregnancy: ujjayi, chandra bhedana, nadi shodhana, sama vritti, lengthen exhale | | Kapalabhati &
Bhastrika | High blood pressure, heart disease, brain tumors, stroke, vertigo, stomach or intestinal ulcers, GERD, gastritis, glaucoma, diarrhea, systemic inflammation, & hyperventilation | | Extended
Kumbhaka | Pregnant, uncontrolled high blood pressure, history of heart attack or stroke, aneurysm of the aorta or in the brain, arrhythmia or tachycardia, cancer, kidney disease, or poor lung function. | | Be mindful during practice of | Increasing tension, loss of easefulness, restlessness, irritability, heaviness, heat | #### Uses #### Depending on the technique can be helpful for: • Nervous system regulation (SNS & PNS), fatigue, stress, to calm or stimulate, concentration/focus, HRV, emotional regulation, anxiety, depression, respiratory & cardiovascular function, blood pressure regulation, and supporting immune function. Rhythmic movement of diaphragm supports circulation to the organs (liver, spleen, stomach, kidneys, intestines), lymphatic & venous return to the heart, digestion & elimination/peristalsis. #### **Traditional benefits:** - Supports digestion, vigor & vitality, serenity, perception, memory, and sharpens the intellect. Purify & regulate the nadis or energetic channels. Cleanses the organs, senses, mind, intellect, & ego. Prepares the body & mind to be fit for concentration/dharana & meditation/dhyana. Pranayama is the window of the self. - "Occasionally, the same set of pranayama creates uneasiness. Be quick to switch over to a breathing pattern more conductive to the body and mind, and soothing to the nerves and brain, so that they are rejuvenated and refreshed. Pranayama should not become a blind routine." – BKS Iyengar # Pranayama Foundations # **Observing Breath** - Breath as the bridge between mind & body - Effortless is key!! - Follow the breath - Listen, do not disregard what the breath is telling you - · Notice the story of needing breath #### BREATH AWARENESS: WHAT RESEARCH SUGGESTS RIGHT NOW Neurocognition - Efficient use of attentional resources ↑ - Time spent in calm state ↑ (internal vs. external point meditation) SCHÖNE ET AL., 2018; SHARMA ET AL., 2022 ## Diaphragmatic breathing - "Belly breathing" - Diaphragm movement - Drives thoracic pump to increase venous & lymph return - Abdominal organ massage (digestion, peristalsis, reproductive organs, liver, kidneys) - · Vagus nerve stimulation | DIAPHRAGMATIC BREATHING: WHAT RESEARCH SUGGESTS RIGHT NOW | | | |---|--------------------------------|---| | 96 | Lung function, biomechanics | Correlation: movement of diaphragm ↑ - changes in lung volume
↑ Facilitates slow respiration | | | Cardiovascular
system | • Venous return ↑ (esp. at 6 breaths/ min) | | | Neurocognition/-
physiology | • Stress (BP, cortisol) ↓ | $\texttt{BYEON ETAL., 2012; DICK ETAL., 2014; HOPPER ETAL., 2019; KOLAR ETAL., 2009; STROMBERG ETAL., 2015, and a state of the property pro$ # Inhalation (Puraka) - · Yang, energizing - SNS dominant - Increases BP - Lungs as an instrument for receiving energy - Focus on 3D expansion of ribs # **Exhalation (Rechaka)** - · Yin, calming, surrender ego - PNS dominant - Lowers BP - Release, let go - · Maintain lift of ribs without muscular effort ## Retention (Kumbhaka) - In its essence, pranayama is Kumbhaka - Retention magnifies the effects of that phase of breath - CO₂ increases - Increased CO₂ tolerance - Increasing CO₂ levels (hypercapnia) → vasodilation→ increased cerebral blood flow - Do not force - Should not cause tension, red face/eyes, or irritation - Maintain lift of spine throughout #### Antara kumbhaka (inhale retention or puraka kumbhaka) - Traditionally to increase energy, confidence, endurance, capacity for work, improve depression, increase BP - Not for uncontrolled high BP, pregnant, or cardiac disorders #### Bahya kumbhaka (exhale suspension or rechaka kumbhaka - Increased parasympathetic activation, traditionally for nervous tension, muscular tension, high BP - Extended not for low BP #### **Both** Not for heart issues, history of heart attack or stroke, aneurysm of the aorta or in the brain, arrhythmia or tachycardia, cancer, kidney disease, sick, or poor lung function. | KUMBHAKA: WHAT RESEARCH SUGGESTS RIGHT NOW | | | |---|--------------------------|------------| | # | Cardiovascular
system | • BP, HR ↑ | | ·) ° · · · · · · · · · · · · · · · · · | Cerebral blood flow | • 1 | NIVETHITHA ET AL., 2017; NIVETHITA ET AL., 2021 | | Cardiovascular
system / metabolism | Repeated sprint training → greater muscle deoxygenation Performance ↑ | |---------------|--|--| | P | Motor system | • Coordination ↑ after breath hold training (swimming) | | | | | | E ET AL., 20 | 09; ROBERTSON ET AL., 2020; TRINCAT E | TTAL., 2017; WOORONS ET AL., 2017 | | E ET AL., 200 | 09; ROBERTSON ET AL., 2020; TRINCAT E | ET AL., 2017; WOORONS ET AL., 2017 | | E ET AL., 200 | 09; ROBERTSON ET AL.,, 2020; TRINCAT E | TAL., 2017; WOORONS ET AL., 2017 | ## **Digital Pranayama** - Delicate, usually right thumb & ring/pinky fingers - Close off at cartilage - Correct amount blocked off creates a smooth, even resonance - Adjust width to adjust timing of breath - Listen for sound variations - Traditionally avoid with headaches, anxious, restless, nose blocked, runny nose, fever or immediately after a fever ### **Bandhas** #### Bondage, joining together or catching hold of • Direct energy, prevent dissipation of energy, support the flow of prana #### Jalandhara Bandha - Upper lock, separates cool lunar plexus from solar plexus for vitality & longevity - Used in inhale retention - Lift sternum to meet chin, stretch sides of neck #### Uddiyana Bandha - Lifts energy up from lower abdomen toward head - Used in exhale retention - Create vacuum, draw belly up & in, relax abdominals #### Mula Bandha - · Counteracts the downward flow of energy - Used in inhale retention - Lift between anus & genitals | Samavritti | | | |--|---|--| | OTHER NAMES | Equal ratio breathing | | | NOTES | Use several recovery breaths between each round at first, then less over time | | | PROGRESSION | Begin with 1:1 (inhale:exhale) Then add inhale retention and build up- 1: ½:1, 1: ½:1, 1: ¾:1, 1:1:1 (inhale:retention:exhale) Then add exhale retention and build up- 1:1:1: ½, 1:1:1: ½, 1:1:1: ¾, 1:1:1:1 (inhale:retention:exhale:suspension) | | | BOX / TACTICAL BREATHING: WHAT RESEARCH SUGGESTS RIGHT NOW | | | | Es | Neurocognition/- physiology • Physiological arousal (HR) ↓ | | BALBAN ET AL., 2023; BOUCHARD ET AL., 2012; RÖTTGER ET AL., 2021 | Visamavritti | , co/; | | |--------------|--|--| | OTHER NAMES | Irregular ratio breathing | | | NOTES | Traditionally heavy on inhale & inhale retention which is why it is used with caution 4:7:8, etc (more energizing with out lifting BP) 4:4:8:2, etc (more calming) | | | PROGRESSION | Many progression options like: 4:4, 4:2:4, 4:2:6, 4:2:6; 4:4:8:2, 4:2:6, 4:4 | | # Pranayama Techniques | Ujjayi | | | | |---------------|---|--|--| | OTHER NAMES | Victorious, Ocean Breath | | | | NOTES | Do not inflate abdomen, 3D movement of ribs Receive the breath, not forceful Louder is more heating | | | | PROGRESSION | Ujjayi on its own Ujjayi with inhale retention, until able to hold for 10secs Ujjayi with exhale retention, until able to hold for 10secs Add mula bandha on inhale retention Add uddiyana bandha on exhale retention Both inhale retention with mula bandha & exhale retention with uddiyana bandha (advanced, not for group classes) | | | | SLOW, DEEP BR | SLOW, DEEP BREATHING: WHAT RESEARCH SUGGESTS RIGHT NOW | | | | 96 | Lung function | 6 breaths/ min optimal for improving alveolar ventilation & reducing dead space | | | | Cardiovascular
system | BP ↓ Stress on cardiovascular system ↓ → can help with athlete's recovery | | | | Neurophysiology | HRV, RSA ↑ Shifting ANS balance towards PNS dominance | | BERNARDI ET AL., 1998; BILO ET AL., 2012; JOSEPH ET A., 2005; MIGLIACCHIO ET AL., 2023; RADAELLI ET AL., 2004; RUSSO ET AL., 2017; ZACCARO ET AL., 2018; ZHANG ET AL., 2016 | Viloma | VYK | |---------------------|---| | OTHER NAMES | Against the grain, interrupted breathing | | NOTES | Supine to beginHold onto diaphragm in pausesOn inhale or exhale | | OPTIONS | Counted (inhale 2-3, pause 2-3, repeat until full→ slow deep ujjayi exhale) By area (3-part breathing: belly→ ribs→ chest) | | ADVANCED
OPTIONS | Not for group classes • Add retention after villoma • Both inhale & exhale viloma | | Anuloma | | | |---------------------|---|--| | OTHER NAMES | With the natural order | | | TECHNIQUE | Seated: 1. Inhale through both nostrils 2. Exhale with both nostrils partially blocked » OR exhale through alternating partially blocked nostril | | | NOTES | Exhale will be longer than the inhale= PNS effects Deflate tension/stress Traditional uses: cleanses nasal passages, lowers BP, calming | | | ADVANCED
OPTIONS | Add retention, bandhas, villoma | | | Pratiloma | | | |-------------|--|--| | OTHER NAMES | Against the natural order | | | TECHNIQUE | Seated: 1. Inhale through 1 or both partially blocked nostrils 2. Ujjayi exhale through both nostrils | | | NOTES | Traditionally inhale is longer than the exhale= SNS effects Less commonly used, unless lengthen exhale too Traditional uses: increase BP, energize | | | OTHER NAMES | Alternate nostril breathing | |-------------|--| | NOTES | Balancing breath (yin/yang, PNS/SNS, warm/cool, right/left body, right/left brain, frontal lobe executive function/primitive brainstem) The line of the left brain in the cool of the left brain. | | | • Traditionally for: even & balanced action in all aspects of the brain, peace, poise, harmony, tap into innermost self, calm nerves, serenity, prep for dhyana | | PROGRESSION | 1. Alternate nostril no retention | | | 2. Through partially closed nostril | | | 3. Add retention | | | 4. Add bandhas | | | | | | | | | | #### Nadi Shodhana | WHAT RESEARCH SUGGESTS RIGHT NOW | | | |--|--------------------------|---| | | Neurocognition | • Cognitive ability ↑ (working memory; reaction time ↓, accuracy ↑) | | | Cardiovascular
system |
HR, BP ↓ Slowing or breath, RSA ↑ → parasympathetic tone ↑ | | ·) 1 -
·) 1 -
· 2 7 -
· 3 7 - | Cerebral blood flow | • Cerebral blood flow velocity (correlated w cerebral blood flow) ↓ | BHARGAVA ET AL., 1988; BHAVANI ET AL., 2014; DEEPESHWAR & BUDHI, 2022; JOVANOV, 2005; KUMAR ET AL., 2022; RAGHURAJ & TELLES, 2008; SINHA ET AL.; 2013 ## Surya Bhedana & Chandra Bhedana #### Surya - sun breath - Inhale left/yang nostril - Exhale right/yin nostril - Energize, warm, SNS - Exhale out heavy, lazy #### Chandra - moon breath - Inhale right/yin nostril - Exhale left/yang nostril - · Calm, relax, quiet, PNS - Exhale out restlessness, irritability # Unilateral nostril breathing | WHAT RESEARCH SUGGESTS RIGHT NOW | | | |----------------------------------|---|--| | *** | Cardiovascular
system /
neurophysiology | • LNB: HR, BP ↓ • RNB: HR, BP ↑ | | ಿ೦ | Respiratory physiology | NO availability in congested side of nose higher during UNB Nasal cycle: accumulation of NO in congested side | | | Neurocognition /
brain activity | LNB: activation in posterior brain areas ↑ (meditative state) RNB: cognitive ability ↑ // anxiety ↓, language ↑ (stroke patients) | BHAVANI ET AL., 2014; DEEPESHWAR & BUDHI, 2022; MARSHALL ET AL., 2014; NIAZI ET AL., 2022; RAGHURAJ & TELLES, 2008; STASSEN ET AL., 2021 # Surya Bhedana & Chandra Bhedana #### BHAVANAI ET AL., 2014; RAGHURAJ & TELLES, 2008; TELLES ET L, 1996 | Bee's breath | | | |--|--|--| | A vibrating, humming sound produced while exhaling through nose Start supine, then seated Fingers cover eyes/ears/nose or ears/skull | | | | Stimulate vagus nerve, quick shift to PNS Enhances flexible cognitive control Great for stress, tension, insomnia, quick calming | | | | | | | | WHAT RESEARCH SUGGESTS RIGHT NOW | | | | | |----------------------------------|---------------------------------|---|--|--| | | Neurocognition /
-physiology | ANS: Parasympathetic dominance CNS: enhanced cognitive control | | | | | Cardiovascular
system | Unclear picture regarding HR, BP | | | | 96 | Lung function | • ↑ • Improvement in chronic rhinosinusitis | | | CAMPANELLI ET AL., 2020; RAJESH ET AL., 2014; VIALATTE ET AL., 2009; ABISHEK ET AL., 2019; GHATI ET AL., 2021; KUPPUSAMY ET AL., 2017A; KUPPUSAMY ET AL., 2017B; KUPPUSAMY ET AL., 2020B; MOOVENTHAN & KHODE, 2014; NIVETHITHA ET AL., 2017; NIVETHITHA ET AL., 2021; PRAMANIK ET AL., 2010; TRIVEDI & SABOO, 2021; TRIVEDI ET AL., 2023 | Bhastrika | | | | |----------------------------------|---|--|--| | OTHER NAMES | Bellows breath | | | | NOTES | Forceful inhalation and exhalation Increase in heart rate, reduced CO2 levels (hypocapnia) → vasoconstriction, reduced cerebral blood flow | | | | TRADITIONAL | For: invigorates spleen, liver, pancreas, digestion, and abdominal muscles. Clear sinuses & runny nose. Refresh & awaken the brain. Generates prana for the entire body, but too much can wear out the system. Not for: exhaustion, weak or poor lung capacity, pregnant, glaucoma, detached retina, perhaps other eye issues, high BP, nose bleeds, ear infections, uterine prolapse, during menses | | | | CONTRA-
INDICATED | • Epilepsy | | | | WHAT RESEARCH SUGGESTS RIGHT NOW | | | | | | Neurocognition /
-physiology | • Visual & auditory reaction time ↓ | | | | Cardiovascular
system | Faster paced/ forceful: BP, HR, cardiac output ↑ Slow paced (6 breaths/ min): BP ↓ , HR ↓ | | | *) 0 0 0 | Cerebral blood flow | • • | | | 96 | Lung function | • ↑ | | CAMPANELLI ET AL., 2020; NIVETHITHA ET AL., 2017; BHAVANANI ET AL., 2003; BHUDI ET AL., 2019; NIVETHITHA ET AL., 2017; NIVETHITHA ET AL., 2021; PRAMANIK ET AL., 2009; VEERABHADRAPPA ET AL., 2011 | Kapalabhati | | | | | |---|---|---|--|--| | OTHER NAMES | Skull-shining breath | | | | | NOTES | Also a Kriya practice, milder than bhastrika Forceful exhale Passive inhalation and active exhalation Increase in sympathetic activation | | | | | TRADITIONAL | For: invigorates spleen, liver, pancreas, digestion, and abdominal muscles. Clear sinuses & runny nose. Refresh & awaken the brain. Generates prana for the entire body, but too much can wear out the system. Not for: exhaustion, weak or poor lung capacity, pregnant, glaucoma, detached retina, perhaps other eye issues, high BP, nose bleeds, ear infections, uterine prolapse, during menses | | | | | CONTRA-
INDICATED | • Epilepsy | | | | | WHAT RESEARC | WHAT RESEARCH SUGGESTS RIGHT NOW | | | | | | Neurocognition /
-physiology | Shifting ANS balance towards SNS dominance (BP, HR ↑) Cognitive performance ↓ | | | | | Cardiovascular
system | • BP, HR, CO↑ | | | | • •) • • • • • • • • • • • • • • • • • | Cerebral blood flow | • Cerebral blood flow velocity (→ cerebral blood flow) ↓ | | | | (Pir | Motor system | • Handgrip strength ↑ | | | | WIM HOF (WHM | WIM HOF (WHM), FAST BREATHING (FB): WHAT RESEARCH SUGGESTS RIGHT NOW | | | | | | Neurocognition /
-physiology | FB: reaction time, movement time ↓; arousal, hindrance ↑ WHM: pain perception ↓ | | | | | Immune system | WHM: epinephrine ↑ (independent of breath retention) WHM: anti-inflammatory effect (cytokine response) | | | CAMPANELLI ET AL., 2020; JOSHI & TELLES, 2009; KUMAR ET AL., 2022; STANCÁK ET AL., 1991A; STANCÁK ET AL., 1991B; TELLES ET AL., 2014; TELLES ET AL., 2019; BUCAHANAN & JANELLE, 2021; ZWAAG ET AL., 2022; ZWAAG ET AL., 2023 | Sitali & Sitkari | | | | | |------------------|---|--|--|--| | OTHER NAMES | Cooling breath | | | | | NOTES | Sitali: inhale through a curled tongueSitkari: inhale over tongue | | | | | TECHNIQUE | Inhale retention with jalandhara (with or without mula bandha)- ujjayi exhale Exhale through partially closed nostrils Exhale through alternate nostrils (or alternate partially closed nostrils) | | | | | TRADITIONAL | Cooling, soothes, good for eyes & ears, for fever, activates liver & spleen, improves
digestion, for halitosis | | | | | WHAT RESEARC | WHAT RESEARCH SUGGESTS RIGHT NOW | | | | | | Metabolism • Body temperature ↑ • O₂ consumption ↑ → pointing to a mild hypermetabolic state | | | | | | | Oz consumption 1 4 pointing to a finia hypermetabolic state | | | |---|--|--|--|--| | AMPANELLI ET AL., 2020; RAJESH ET AL., 2014; VIALATTE ET AL., 2009; TELLES ET AL., 2020 | | | | | | Nauli | | | | | | OTHER | also a Kryia practice | | | | | TECHNIQUE | Create vacuum after exhale to draw belly up & in, relax abdominals | | | | | NOTES | Hypopressives: Relaxation of diaphragm, decrease intra-abdominal pressure Combination of exhale retention and pressure changes Can activate pelfic floor muscles, abdominals Used in urinary incontinence and postpartum | | | | | HYPOPRESSIVES: WHAT RESEARCH SUGGESTS RIGHT NOW | | | | | | | Motor system/ posture | For pelvic floor strength, ideally + pelvic floor muscle training Posture control, trunk muscle contraction ↑ Diaphragm thickness, strength during inspiration ↑ | | | DA CUNA-CARRERA ET AL., 2021; NAVARRO BRAZALES ET AL., 2019; JACOMO ET AL., 2020; MORENO-MUNOZ ET AL., 2021; VICENTE-CAMPOS ET AL., 2021 # **Progression** - 1.
Shorter breath with recovery breath as needed - 2. Longer, slower breath - 3. Inhale retention (progressively longer) - 4. Exhale retention (progressively longer) - 5. Inhale retention with mula bandha & or jalandhara #### bandha - 6. Exhale retention with uddiyana bandha - 7. Both inhale & exhale retention - 8. Adding other variations like viloma, anuloma, bhramari, right or left nostril, alternate nostril ## **Sequencing Notes** - Prepare for easefulness throughout practice - Simple practices prepare for more complex - Follow up stimulating practices with calming/ focusing practices - End with calm/focus, cooling, or easeful practices # Pranayama techniques - overview Note: this categorization is based upon primary features of the techniques; some techniques may have multiple features (example: Nadi Shodana involves breathing through alternating nostrils and also breath holds) ## Pranayama techniques - mechanisms